
Quantisation of limit cycles in a P representation of a dissipative driven anharmonic oscillator

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1986 J. Phys. A: Math. Gen. 19 2737

(http://iopscience.iop.org/0305-4470/19/14/013)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 19:21

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/19/14
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1. Phys. A: Math. Gen. 19 (1986) 2737-2749. Printed in Great Britain 

Quantisation of limit cycles in a P representation of a 
dissipative driven anharmonic oscillator 

J S Satchellt and Sarben Sarkar 
Centre for Theoretical Studies, Royal Signals and Radar Establishment, Great Malvern, 
Worcs WR14 3PS, UK 

Received 29 May 1985, in final form 13 August 1985 

Abstract. The non-linear polarisability model of dispersive optical bistability with periodic 
driving field is shown to have non-trivial limit cycle solutions in phase space. The model 
is quantised rigorously in the positive P representation. For a particular (but typical) limit 
cycle, the associated steady state probability distribution is shown to be compatible with 
a bivariate Gaussian. The inverse widths of the Gaussian are calculated as functions of 
position in both phase space and time. 

1. Introduction 

Recently there has been interest in dissipative and Hamiltonian systems with a small 
number of degrees of motion which have complicated periodic and aperiodic classical 
orbits [ 13. The quantum analogue of these motions is now attracting attention although 
mostly in Hamiltonian systems. In fact most non-linear systems are known to show 
complicated orbits. Hence there is an enormous choice of systems whose quantum 
analogues can be studied. We will study a model which arises naturally from the 
theory of dispersive optical bistability [2]. Its advantage is that its quantisation can 
be treated in a satisfactory manner. 

The classical system is described by 

where p is the position and q the momentum of an oscillator. In the absence of the 
periodic driving term % cos W d t  and the damping y these are just Hamilton’s equations 
associated with the Hamiltonian 

(3) H = f ( p 2 + w 2 q 2 ) + $ A ( p 2 + u  2 q 2 2  ) 

where A is a coupling constant and w is a frequency. Without the damping and driving, 
the system is trivially integrable, and when quantised the standard number states [3] 
form a complete set of eigenstates. If there is too much damping the motion will be 
simple and lie in the vicinity of the origin. The non-linearity of the oscillator implies 
that the effective frequency of the oscillator depends on its amplitude. With driving 
and a reasonable amount of damping complicated classical orbits may arise. We have 
only found quite involved limit cycles, but no chaotic trajectories. 

t Also at: Clarendon Laboratory, University of Oxford, Oxford, UK. 
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The quantum analogue of (1) and (2) can be derived from the Hamiltonian H' 

H'= hw(ata  +f)+Ah2U2((Zt(I + f ) 2 + (  h/20)"'8(U + U ' )  COS wdf 

+E hwi(r:ri +f) +E (g,ar:+ g:atri) (4) 
I I 

where a and at are the annihilation and creation operators of the oscillator of interest, 
T i  and r: are similar quantities for the ith reservoir oscillator of natural frequency wi 
and gi is the coupling strength of the ith component of the reservoir with the anharmonic 
oscillator. This is a standard way of consistently introducing dissipation into quantum 
systems. The resulting master equation [4] for the density matrix is 

ap/a t  = -iw[ata, p ]  -iAhw2[(a'a)2+ a'a, p]+ y(2apa' -atup -pats) 
+ i(2ofi)-'/'8[p, a + a'] cos W d f .  ( 5 )  

This operator equation needs to be transformed into a c-number set. In a number state 
basis we have an infinite hierarchy of coupled linear ordinary differential equations. 
In general a criterion needs to be introduced to truncate the infinite hierarchy. We 
shall follow a different approach. It is useful to express (5) as a Fokker-Planck equation 
(FPE) for a positive P representation [ 5 ] .  The moments of P give normally ordered 
expectation values and it can be interpreted as a classical distribution on an enlarged 
phase space. A particularly attractive feature of (5) is that the corresponding FPE is 
exact. For most systems the FPE is obtained from the master equation only after a 
system size expansion [ 6 ] .  

aP/at  = (a/da( '))[ia( ' )+ (y /w)a( ' )+2is (a( ' )+  (a( ')) 'a( '))  

The FPE for P is given by 

+i80~- ' (2wh)- ' /~  cos (wd/w)T]  

+ ( a/aa'2')[ -ia (2)  + ( y /  w ) a(2)  - 2 i ~  ( a  (2)  + a( ' ) (  a ('))') 

- i 8 w  -' ( h / 2w)'/' cos ( wd/ U )  T ]  

- i&[(a2/aa"'2)(a('')2 - (az /aa(2)2) (a(2) )2~ ( 6 )  
where r is wt  and E is Ahw. 

In the positive P representation, although a( ' )  corresponds to a and a(2)  to at, no 
explicit constraint that a( ' )  is conjugate to a(') is incorporated. This gives rise to the 
extended phase space. It is convenient to transform ( 6 )  into a complex Ito-Langevin 
stochastic differential equation ( SDE) 

da") = Ai d r  + du d W, i = 1,2. 

Here 
(7) 

where 

= $w-'(2wh)-'/' 

and 
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Wj is a Wiener process, those with differentj being independent of each other. Equation 
(7) will first be solved numerically. Schematically this equation can be written as 

da(')(T) =fi(a'"(.r), ( ~ ' ~ ' ( 7 ) )  dT+eia(')(T) dW,.(T). (10) 

No summation convention for repeated indices is in force here. A lowest-order 
algorithm for solving this is 

( Y ( ' ) ( T )  = ~Y '" (o )+f i ( (Y (~ ) (o ) ,  c X ( ~ ) ( O ) ) T +  ep"'(o)( w(T) - w(0)) (11)  

which is a better approximation the smaller T is. This corresponds to the Euler method 
for conventional differential equations, and is found to be numerically unstable for 
lime steps as short as even when the damping is as large as ? = O S .  These 
instabilities occur, as expected, more readily in cases of light damping. To overcome 
these difficulties we have used a second-order Taylor expansion for the stochastic 
process a( ' ) .  This gives 

a ( ' ) ( ~ )  = a ( " ( ~ ) + f i ( a ' " ( ~ ) ,  ( Y ' ~ ) ( O ) ) T +  eia '"(o)  w,.(T) 

+ef; (a(" (O) ,  c~ '~ ' (0 ) )  sdW,(s)+efa'"(O) 1: 
+ e ; a ' ' ) ( O )  [:dW,(s) dW,(s')W,.(s') 

j = 1  

Essentially all previous work on SDE has been based on ( 1  l ) ,  and most authors have 
considered single variable SDE. Helfand [7] and Greenside and Helfand [7] considered 
coupled SDE with only additive noise. Rao et al [7], however, treated a one-variable 
SDE with multiplicative noise and produced an algorithm equivalent to a fourth-order 
Taylor expansion for the stochastic process. Coupled SDE with multiplicative noise, 
however, have not been tackled before beyond the Euler algorithm. The derivation of 
(12)  is given in appendix 1. 

A complementary approach will also be sketched which is valid in the semiclassical 
limit [8] and it will be found that the essential features obtained using the more general 
stochastic differential equations are compatible with those in the semiclassical limit. 

The anharmonic system has many distinct limit cycles. We show three in the figures; 
we will concentrate on the limit cycle in figure 3 because it is non-trivial, yet without 

being too cpmplicated. The system parameters are taken to be y = 0.5, E = 
= 1, 8 = 200. We will deal exclusively with the variables Re ( ; ( c t ( ' ) + ~ ~ ( ~ ) ) ) ,  4 

say, and Im (:(a(')- a ( 2 ) ) ) ,  p* say. It is easy to show that in terms of these variables 
the uncertainty relation has the form 

A ( q ^ ) A ( i )  3 a (13) 
where A ( x )  denotes the standard deviation of the variable x. 4 is proportional to q 
and to p (at least in the sense that their moments are related). The limit cycles are 
just plots of (4) (the expectation value of 4) against that of (e). The statistics around 
the mean are given by the following normally ordered expectation values M,s: 

M s  = ( : ( i  - (4))r(e- (e))s : ) (14) 
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Figurf 1. Limit cycle with y = 0.5, E = 
2.0, % = 1000. 

wdw-' = Figurf 2. Limit cycle with y = 0.5, E = 
1.3, 8 = 1OOO. 

wdw-l = 

Figure?. Limit cycle with y = 0.5, E = lo-', wdw-' = 
T/3, %=200. 
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-10 - 6 . 5  

(j) 

-31 -1 9 

-52 -32 0 51 10 15 20 26 

t 

Figure 4. Time series for (4). 
t 

Figure S. Time series for ($). 

the colons denoting normal ordering. We estimate the values of the moments from an 
ensemble of 500 trajectories. All the trajectories are started from the same initial 
condition, and sums (over ensembles) like X a('), X X a( ' )a(*)  , etc, are recorded 
by the program. This allows us to build up our statistics over many runs of the program. 
The moments are estimated from these sums. No time averaging is employed, and 
hence no assumptions about ergodicity are needed. The calculation of the moments 
for too high an order is unreliable owing to insufficient statistics. We have calculations 
for ( r  + s) S 4. An ensemble of 500 was mostly used. For a Gaussian process it is well 
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known that 

M13=3MozM11. 

It turns out that within statistical uncertainties the positive P distribution has moments 
up to fourth order which are consistent with Gaussian statistics, and this is a property 
which holds independent of time. Since there are no points for which the derivatives 
of the drift vanish on the limit cycles that we are considering, it is to be expected that 
sufficiently near the limit cycles the probability distribution should be Gaussian. In 
fact this is a useful check on the consistency of the statistical procedures used. However 
the determination of the shape of the Gaussian along a circuit of the limit cycle is 
non-trivial. The time series for MZo and MO, in figures 6 and 7 are compatible with 
being periodic with a frequency twice that for the evolution of ( 6 )  and (3).  This was 
found rigorously in the semiclassical approach, and is related to the inversion symmetry 
of the limit cycles considered around their centres. 

The uncertainty relation can be expressed in the form 

and we have plotted (M20M02)’ /2  in figure 8 ,  which is of course also periodic. A 
minimum uncertainty state is not achieved along the limit cycle and so we are not near 
a semiclassical regime. We see that the variances of $ and 3 oscillate as the system 
traverses the limit cycle. This does not necessarily mean that the size of the distribution 
is varying in time; it could be due to a distribution of constant size rotating in phase 
space. If the distribution was elongated the projections onto the axes would appear 
to oscillate. We can exclude this possibility by diagonalising the covariance matrix 
and examining the major and minor axes of the distribution as a function of time. We 
find that the diagonalised quantities also oscillate. Furthermore the distribution is not, 
in general, very elongated since the typical ratio of major to minor axis length is only 
about 1.2:l. Finally, the minor axis length is everywhere greater than so the 
distributions do not show any sign of squeezing. 

7 4  10 0 

5 9  8 0  

c5 6 1  

4 

- “ 3 0  $ 4 1  B 

1 5  2 1  

0 071 0 17 
0 5 1  10 1 5  20 26 0 5 1  10 15  20 26 

t f 

Figure 6. Time series for Mz0. Figure 7. Time series for Mo2. 
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Figure 8. Time series for (M2&f02)”*. 
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Figure 9. Time series for (4’). 

The positive P representation has auxiliary unphysical variables and it is interesting 
to check the variances in these. Paralleling the development for the physical degrees 
of freedom we introduce the notation i‘ and p ’̂ where 

3’ = 3 Re( ( l )  - ,(2’*) 

p^LfIm(,“’-,(2)* ) (17) 

Mis = (:( 4’ - (i’))’($’ - (6‘))’:). (18) 

and the moments Mis are given by 

As expected ($) and (6’) are compatible with zero. The calculations of the variances 
Mho and MA2 show a remarkable similarity in structure to MO2 and M2,,, respectively, 
in particular for the periodicity. Owing to the dissipative nature of the system, there 
is no conservation of the extended phase space volume. 

Although the SDE approach is powerful it is limited by statistics. Consequently it 
would be satisfying if there was a complementary analysis showing qualitatively similar 
behaviour. In the semiclassical regime we can calculate the moments discussed above, 
but using ordinary differential equations. Indeed there is much corroboration with the 
results already found. Since the semiclassical analysis is based on a study of ordinary 
differential equations the accuracy of the calculation of moments is not limited by 
statistics. If the FPE of ( 6 )  were rewritten in terms of the real and imaginary parts of 
& ( l )  and c i (2)  as described in appendix 2 it would have the canonical form [7] 

a P / a t  = - ( ~ / ~ x ~ ) ( A ~ P )  + E ( ~ * / ~ x ~ ~ x , ) ( D , , P )  

9.1 r 
2.00 

1.20 
7 9 -  

5.5 . 

-0 50 

-1.30 

-2 .201 I J . I I . . . . . , 
0 5 1  10 15 20 26 0 5 1 10 15 20 26 

t 

Figure IO. Time series for (E’).  
t 

Figure 11. Times series for M40, 
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1 4  -0.85 

-1.40 
0 5.1 10 15 20 26 -a84 -0.51 -0.17 0.17 0.51 0,85 
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Figure 12. Time series for MA2, Figure 13. The motion in phase space of the peak 
of the probability distribution in the semiclassical 
limit for y = 0.5, A = 10, wd = 2.0 and E = 14.1. 

(with ( x i ) ,  1 s i s n denoting real variables). Assuming that there is a solution of the 
form 

P = Po exp (- W / E )  (20) 

(21) 

it can be shown that WO satisfies 

a wo/at = -Ai(d Wo/axi) - Dij(a c tb /ax , ) (a  wo/axj) 
where 

w =  WO+O(E). 

The semiclassical limit is equivalent to E + 0. 
Equation (21) is obtained by equating terms of 0 (1 )  when (20) has been used in 

(19). These are first-order differential equations and so can be solved by the standard 
method of characteristics [8,10]. The equations for the characteristics have the form 

dxi/dt  =Ai+2Di jP,  (22) 
d W /  d t = ( AI + 2 DjiP,) P, + C (23) 

dPi/dt  = - [P,(a/axi)Aj+ ((a/axi)Dlj)PIP,]  
C = -Aipi - D..P.P. 

‘1 I I ’  

The method of solution of (22)-(25) has been given in [8] and [9]. However for clarity 
we will sketch here the main steps. Given an intial peaked distribution W ( x , ,  x2 ,  x3 ,  
x 4 )  (where the { x i }  are {(Yy), EL*), E:) ,  E? ) } )  it is possible to take a uniform grid of 
points around the peak of W in the four-dimensional X space. For each such point, 
(22)-(25) can be solved with the initial condition given by W and a w/ax,. The time 
evolution gives a characteristic. At a time to the values of W, a W/axi  and xi  determine 
the distribution P at { x i } .  Hence, if the characteristics are found for the grid of initial 
points, then, at time t, W is determined at the grid of endpoints of the characteristics. 
However a naive application of this procedure is not useful since the characteristics 
have a tendency to run off to infinity where the probability is negligible. In order to 
obtain the distribution near its peak it is necessary to propagate the characteristics for 
a short time (so that the grid of values found for W are still representative of the peak 
of the distribution). The resulting W is fitted using a suitable basis of functions. The 
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Figure 14. Time series of 4 projection of orbit of 
centre of distribution. 
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Figure 16. Time series for var Q 
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Figure 17. Time series for var p. 
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Figure 18. Time series for var 4'. Figure 19. Time series for var p', 
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procedure is then repeated. In this way the probability distribution can be found as 
a function of time. 

For our particular case W is taken to have the expansion 

Unless any of the coefficients c u k /  are anomalously small the non-Gaussian 
contributions to W are negligible in the semiclassical limit. The Hamilton-Jacobi 
equations give CUkl as a function of t .  It is convenient to  arrange these coefficients 
into a matrix r 

I t C H 2 2  t C l 2 2 2  f C 2 l 2 2  c 2 2 2 2 1  

The coefficients Cllk, of course have the symmetry property 

C y k l  = Ckh]. (29) 
In order to compare results with those of the SDE approach it is necessary to consider 
r-’, the inverse of r. r-’ is the matrix of covariances. If SG, denotes the deviation 
of E, from its determination value then 

(30) 

(31) 

(32) 

(33)  

(34) 
and calculate (q), var p, var i j ,  var p‘ and var 4’. The calculations show that the 
Gaussian ansatz of (26) is a good representation for the probability distribution. 
Moreover the periodic motion of ( q )  and (p) has half the frequency of the motion of 
var 4 and var p .  As noticed in the SDE calculation var {j} and var {::} are similar. The 
calculation is summarised in figures 13-19. These results are consistent with the findings 
of the SDE approach and show that the semiclassical and fully quantal situations have 
qualitatively similar behaviour. 

(I?) yk/  = (: S&t~S6k/:). 

i j  = t ( G I l  + G21) 

p = I (  t i l2  - G22) 

4’ = $ ( G l l  - G2, )  

p’ = +( E I 2  + G22) 

We can, as before, introduce the quantities 

2. Conclusions 

We have constructed the positive P probability distribution in the parameter region 
where the non-linear polarisability model has non-trivial limit cycles. The importance 
of this work lies in the following points: 

(i)  understanding the nature of the positive P representation; 
(ii) as a step towards quantising non-trivial attractors (which exist in classical 

phase space) when there are no analytic solutions for these attractors; 
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(iii) going beyond the universally used algorithms for solving SDE for coupled 

(iv) the quantisation is exact in principle unlike essentially all non-trivial dissipative 

(v) comparing a fully quantum mechanical treatment with semiclassical methods. 
Specifically, the SDE and semiclassical approach have shown very good qualitative 

agreement concerning the behaviour of ( p ) ,  ( q ) ,  ( p ’ ) ,  ( q ‘ ) ,  var p ,  var q, var p ’  and var 
q’. The variances in the unphysical degrees of freedom show not only similar magni- 
tudes to those in the physical degrees of freedom but var p = var q’ and var q = var 
p ’ .  The moments are compatible with the positive P distribution being Gaussian and 
oscillating with twice the frequency of the motion along the limit cycle. Moreover the 
major and minor axes of the distribution oscillate as well as rotate during the motion. 

This, as far as we know, represents the first quantisation of limit cycles in a dissipative 
system. 

non-linear SDE with (albeit a specific form of) multiplicative noise; 

systems that have been studied so far; and 

Acknowledgments 

One of us (JSS) thanks RSRE, Malvern, for the funding of his Research Associateship 
at the Clarendon Laboratory, Oxford, UK. We thank H J Carmichael for useful 
comments and R J A Tough for helpful remarks on the manuscript. 

Appendix 1 

The Ito-Langevin equation 

da“’(7) = J ( a ( ’ ) ( 7 ) ,  a (* ) (7 ) )  dT+ e i a ( i ) ( T )  dW.(.r) 

formally has the solution 

The Ito integral 1; ( Y ( ~ ) ( s )  d Wi(s)  is defined as the limit of 

(Al . l )  

(Al.2) 

as n + w  and 

0 = So< SI < S 2 c  . . .< S, = 7. (A1.3) 

Moreover 

(W,(Sj) - Wi(Sj-,)) = 0 

(( W(Sj)  - W(SjJ)*)  = ISj - s j - l l .  

(A1.4) 

(A1.5) 

Of course ( Wi(sj)- W,(S~-~)) is a Gaussian variable. We shall obtain from (Al . l )  a 
solution of the SDE whose mean and variance are correctly given up to O(T*).  Hence 
correction terms will be O(T”*). The Euler method gives the mean and variance up 
to O ( T ) .  The approximations are successively obtained by iterating (Al.l) ,  i.e. the last 
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approximation found is substituted in the RHS of ( A l . l )  in order to generate the next 
approximation. We shall now give all the stages of approximation: 

a( ' ) (  7 )  = a'i'(o) + o( 7"').  (A1.6) 

A single power of a Wiener increment, ( W (  T )  - W(O)), gives a contribution of O( T " ~ )  

to C Y ( ~ ) ( T ) .  By this we mean that the variance will have a direct contribution of O ( T )  
from such a term and a contribution proportional to O( d") from any non-trivial cross 
term which has it as a factor. There is, of course, no contribution to the mean. The 
trivial approximation gives the mean and variance accurate to O( 1 ) .  

a ( ' ) ( ~ )  = a ( ' ) ( ~ ) +  eia"'(0) w , . ( T ) + o ( T ) .  (A1.7) 

The mean and variance are accurate to O ( T ~ / ~ ) .  Since there is no contribution to the 
mean and variance to O(T"*) in (A1.7) it is no better than (A1.6). 

The next approximation is 

Proceeding as before, 

a ( ' ) ( ~ )  = a ( ' ) ( ~ )  + J ( { ~ ( ~ ) ( O ) ) ) T +  e ia( ' ) (0)  w,(T) 

+ e f a! ( i ) (  0) 

In the mean square limit 

w,.( s ) d W, ( s ) + O( 73/2). l 
1; W , ( S )  d w ( s ) = f [ ( W , ( ~ ) ) ~ - ~ ] .  

Hence 

In this way we can show 

~ ( ~ ' ( 7 )  = CU( ' ) (O)+A( (Y(O) )T+  eia")(0) w , ( T )  

(A1.8) 

(A1.9) 

( A l .  1 0) 

( A l . l l )  

(Al.12) 

(A1.13) 

where 
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This algorithm gives the mean and variance correct up to O( T’) to state the properties 
of the stochastic terms in (A1.12). On adopting the convention that Wi(0) = 0 the 
stochastic integrals in (A1.12) can be evaluated to give 1; W , ( s )  d W , ( s ) = ; ( ( w ( ~ ) ) ~ - ~ )  (Al .  14) 

1; dW,(s) 1; w(s’) dw(s’ )=d(  W(T) )~ -$TW, (T)  (A1.15) 

(Al .  16) 

W,.(T) and J: W , ( s )  ds  are partly correlated Gaussian random variables. All other 
stochastic quantities in (A1.12) can be evaluated in terms of these two quantities. 

(( W , ( 4 ) 2 )  = (A1.17) 

so the covariance matrix is 
1 2  

M = ( i : ,  ;i3). 
We can find a matrix C such that 

CC‘= M. 

This is the Cholesky decomposition of M. A suitable C is 

(Al.18) 

(Al.19) 

(Al.20) 

(A1.21) 

(A1.22) 

If t1 and t2 are a pair of independent Gaussian random variables of zero mean and 
unit variance 

(Al.23) 

Hence, computationally, for each time step two calls are made to a random number 
generator for each variable. 

Appendix 2 

If 

Y j = 1 , 2  (A2.1) 

5:) = (2h/w)’/2ap j = l , 2  W . 2 )  

5:) = (20h)1/2a(J) Y ’  ( A 2 . 3 )  

,(A = (i) + i,W 
f f x  

(where a!$ and ay’ are real) then it is convenient to use the scaled variables 
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In terms of these quantities the diffusion matrix D has the following non-zero elements: 

Moreover the drift A is given as follows: 
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